智慧機電整合課程

數位通訊技術

Digital Communication Technology

負責教師

龔志賢

學分

3

授課節數

3
數位通訊是現代通訊系統的關鍵技術,本課程將介紹數位通訊系統基本架構,數位與類比系統比較,數位訊號轉換與編碼,基頻通訊原理,載波通訊原理。1.瞭解數位通訊系統基本架構及功能;2.瞭解數位與類比系統之優劣;3.熟悉數位訊號轉換與編碼技術;4.熟悉基頻通訊基本原理;5.熟悉載波通訊基本原理。
Digital communication is the key technology for modern day’s communication systems. This course aims to familiarize students with the basic techniques of digital communications, including 1. System architecture of digital communication systems 2. Comparisons of analog and digital communications 3. A/D conversion and coding 4. Base-band digital communication 5. Carrier-modulated digital communication.

自動化工程

Automation Engineering

負責教師

陳智勇

學分

3

授課節數

3
自動工程的設計所包含的技術層面很廣闊,例如微電子學、機械學、光學和電腦工程學。透過這個有效的訓練,能夠使得學生們在工業的領域裡,對於系統設計方面擁有專業的能力。這個訓練將舉一些實務的例子來深入了解設計的概念。這個課程將會要求提升設計發展及實務練習的能力。
The contents of automatic Engineering course include broad techniques such as microelectronics, mechanics, optical and computer engineering. Through this effective training, the students will be capable of the special abilities of system design applied in industry field. This course will illustrate some practical examples to deep the concepts of design. The practical exercises in this course should be requested to enhanced the abilities of design and development in automatic engineering.

基礎數學

Basic Mathematics

負責教師

謝昇憲

學分

3

授課節數

54
本課程主要是要讓大家學習如何把數學說清楚、講明白,它除了是所有數學課程必備的基礎訓練,其所傳達的概念也大量地應用於資訊科學領域之 人工智慧、編輯器、程式語言,以及語文學中的邏輯語意學等。
This course is mainly for everyone to learn how to speak clearly and understand mathematics. In addition to the basic training necessary for all mathematics courses, the concepts it conveys are also widely used in information science. Fields of artificial intelligence, editors, programming languages, and logical semantics in philology.

生物機電工程概論

Introduction on Biomechatronics Engineering

負責教師

陳智勇

學分

2

授課節數

36
本課程主要介紹生物機電工程的基本原理、組成、目前研究趨勢與應用範例,介紹主題包括生物技術產業的工程化、農漁牧產業的自動化生產及醫學工程技術等。
This course presents the principle, components, current research and application examples in biomechatronics engineering. Topics consist of engineering in biotechnology industry, automation in agricultural, fishery, and animal productions, and biomedical engineering.

工廠作業與實習

Workshop Operation and Practice

負責教師

陳智勇

學分

3

授課節數

72
本課程內容包括工廠安全、量具使用、工具修磨、鉗工、銲工、油漆工、水管工、電工、混凝土工、板金及展開圖等。配合正課讓學生練習在工廠工作之技能,本課程內容包括工廠安全、量具使用、工具修磨、鉗工、銲工、油漆工、水管工、電工、混凝土工、板金及展開圖等。
Course contents include the safety of workshop, the use of measuring tools, tool grinding, bench work, welding, paint work, pipe work, electrical work, concrete work, sheet material work and developing etc. Match up the program training students to learn the skill which they will work in the plant, course contents include the safety of workshop, the use of measuring tools, tool grinding, bench work, welding, paint work, pipe work, electrical work, concrete work, sheet material work and developing etc.

機電概論

Introduction to Mechantronics

負責教師

吳上立

學分

3

授課節數

54
本課程的目的讓學生熟悉目前業界常用之電控、機械、感測器、控制器等組件,並學習如何使用業界常用之通訊方式來讀取感測器訊號或控制外部零件,讓學生具備機電整合之基本能力。
This course aims to enable students to electronic control, machinery, sensors, controllers and other components commonly used in the industry, and to learn how to read sensor signals or control external parts by using communication methods commonly used in the industry, so that students can have the basic ability of mechanical and electrical integration.

電腦視覺與影像處理

Computer Vision and Image Processing

負責教師

陳智勇

學分

3

授課節數

54
本課程期待培養學生於影像處理、電腦視覺及深度學習領域技術設計及整合實作的能力,透過務實的作業實例來培育學生具備研發思考、程式設計及解決現存問題的能力,藉由分組計劃的實作來培養學生具備發現問題、解決問題及團隊分工合作的能力與精神,並可把所學的理論基礎應用到工業界、臨床醫學影像處理及精準運動的實務面。
本課程期待培養學生於影像處理、電腦視覺及深度學習領域技術設計及整合實作的能力,透過務實的作業實例來培育學生具備研發思考、程式設計及解決現存問題的能力,藉由分組計劃的實作來培養學生具備發現問題、解決問題及團隊分工合作的能力與精神,並可把所學的理論基礎應用到工業界、臨床醫學影像處理及精準運動的實務面。 Computer Vision and Image Processing 3 E C. Y. Chen This course is expected to cultivate students' abilities in technical design and integrated practice in the fields of image processing, computer vision and deep learning. Through practical work examples, students will be cultivated to have the ability of R&D thinking, programming and solving existing problems. The practice is to train students to have the ability and spirit of discovering problems, solving problems, and teamwork division and cooperation, and can apply the theoretical foundations they have learned to the practical aspects of industry, clinical medical image processing and precision sports.

程式語言與實習

Programming language and internship

負責教師

謝昇憲

學分

2

授課節數

54
本課程主要透過 C++ 介紹程式設計的概念及其相關指令的語法與程式結構,介紹主題包括整合開發環境介紹、程式設計基本流程、物件導向程式設計等。
This course uses C++ to demonstrate the programming concept, instruction and algorithm. Topics include introduction of integrate development environment, fundamental process of programming, object-oriented programming, etc….

影像處理原理與應用

Principle and Application of Image Processing

負責教師

謝昇憲

學分

3

授課節數

54
課程主要介紹有關數位影像處理的基本原理及應用技術,同時著重以程式處理影像之基本訓練。課程中將探討數位影像之資料結構、影像變換方法、影像強化及特徵擷取技術等課題,並介紹目前影像處理之開源工具,以及影像處理相關技術的最新進展與應用。
In addition to programming technique, the principle and techniques of digital image processing will be presented in this course. The digital image data structure, transforming methods, image enhancing technique and features extraction are the issues presented in this course. The open source tools for digital image processing and applications in agriculture and biology are introduced as well.

python基礎及應用

Python Basics and Applications

負責教師

謝昇憲

學分

2

授課節數

36
本課程介紹Python初學者如何在計算機上設置Python、Python變量、Python註釋、Python程式中讀寫文件、機器學習。
This course provides an overview for Python beginners, how to set up Python on your computer, Python variables, Python comments, reading, machine learning and writing files in Python.

無人載具應用農業實作

Unmanned Vehicle Application in Agricultural Practices

負責教師

徐子圭

學分

3

授課節數

72
因應農業4.0的發展,農耕的生態由傳統人力逐轉變為自動化、無人化、智能化及空間立體化,其中無人載具之應用為一大趨勢,本課程簡介目前智慧農業之發展、無人載具之應用、遙控無人機之操作、GPS之應用、IoT物聯網整合;而遙控無人定翼及多旋翼機應用及考照練習亦為課程重點。
According to the development of Agriculture 4.0, the ecology of farming has gradually changed from traditional manpower to automation, unmanned, intelligent and spatial three-dimensional. Among them, the application of unmanned vehicles is a major trend. This course introduces the current development of smart agriculture and unmanned vehicles, the application of remote-control vehicle, the operation of remote -control aircraft, GPS application, and the integration of IoT. Moreover, the application of remote-control unmanned fixed-wing and multi-rotor aircraft and license examination exercises are also the focus of the course.

電工學

Engineering Mechanics of Electrical

負責教師

陳智勇

學分

3

授課節數

54
本課程的主要內容為各種電路的特性分析,直流電路與交流電路為最主要目標磁學及其應用亦為探討之對象。討論各種電路系統所含括的元件及迴路,並以電路圖表示各電路之關係。使學生對電學原理有基本認識。實習課程內容包括:三用電錶之認識及應用;交直流電壓測試;電阻及歐姆定律 串並聯電路及克希荷夫定律;重疊原理;直流功率及最大功率輸出測試;RLC串聯諧振;RLC並聯諧振;LC濾波實習;變壓器特性實習;熱敏電阻及熱控電路;示波器的認識;整流實習;馬達轉速與輸出功率;發電機之認識;基礎供電設計。
The theme of this course is the analysis of electric circuits. Especially D.C-circuits and A.C-circuits. The theory of magnetism and its application will be also discussed. The various components and interconnection of an electrical system comprise what is described as an electric circuit, and a circuit diagram is a graphic representation of an electric circuit. It provides the basic concept of electric circuits.The laboratory main topics of this course includes: Use of meters (AV);DC. AC. Voltage;Resistor and Ohm’s Law;Serial and Parallel circuit and Kirchhoff’s law;Super position theory;DC power testing and maximum power output testing;RLC in Series (resonance);RLC in parallel;.LC pass-filter testing;Characteristics of Transformer Testing;Thermal Resistor and Thermo-control circuit testing; Oscilloscope Training; AC-DC Testing; Speed and power of a motor;Generator;Fundamental Design of Transmission and Distribution system。

智能監控

Intelligent monitoring

負責教師

謝昇憲

學分

3

授課節數

54
1.具備建築智慧化居家監控的整合原理與基本技能,以系統思考及科技資訊之運用,積極面對與解決職場各種問題。2.具備燈光、節能與電氣及環境之控制、設計與應用技術能力,以系統思考及科技資訊之運用,積極面對與解決職場各種問題。3.具備門禁控制、防災與監控及遠端居家智慧控制之設計與應用技術能力,展現保養維修之能力及問題解決之素養。4.認識智慧居家監控工場設施,並了解工業安全及衛生與消防安全相關知識,5.具備對工作職業安全及衛生知識的理解與實踐,展現良好的工作態度與情操。能思辨勞動法令規章與相關議題,省思自我的社會責任。
1. Possess the integration principles and basic skills of building intelligent home monitoring, and actively face and solve various problems in the workplace with systematic thinking and the use of scientific and technological information. 2. Capable of controlling, designing and applying technology for lighting, energy saving, electrical and environment, and actively face and solve various problems in the workplace with systematic thinking and the use of scientific and technological information. 3. With the design and application technical capabilities of access control, disaster prevention and monitoring, and remote home smart control, it demonstrates the ability of maintenance and repair and the quality of problem solving. 4. Understand the smart home monitoring factory facilities, and understand the related knowledge of industrial safety and sanitation and fire safety, 5. Have the understanding and practice of occupational safety and sanitation knowledge at work, and show a good working attitude and sentiment. Be able to contemplate labor laws, regulations and related issues, and reflect on self's social responsibility.

人工智慧與深度學習

Artificial Intelligence and Deep Learning

負責教師

謝昇憲

學分

3

授課節數

54
本課程以由淺入深,循序漸進的教導AI基礎架構,打下AI基礎學習,是踏入AI學習大門必修課程。你將學會資料處理的Python套件(Numpy、Pandas、Scipy、Matplotlib、Seaborn..);學會用scikit-learn在應用主題中實現機器學習演算法(Regression、Decision Forest、KNN或Kmeans等)、驗證模型績效,並進行參數調校來優化模型;學會用Keras/TensorFlow搭建深度的神經網路,如卷積神經網路(CNN)、遞歸神經網路(RNN)、強化學習(Reinforcement learning)、生成對抗網路(Generative Adversarial Networks)等,以實現人臉辨識、自然語言對話等人工智慧主題。
This course teaches AI infrastructure from the shallower to the deeper, step by step, and lays the foundation for AI learning. It is a compulsory course for stepping into the door of AI learning. You will learn data processing Python suites (Numpy, Pandas, Scipy, Matplotlib, Seaborn...); learn to use scikit-learn to implement machine learning algorithms (Regression, Decision Forest, KNN or Kmeans, etc.) in application topics, and verify models Performance and parameter tuning to optimize the model; learn to use Keras/TensorFlow to build deep neural networks, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Reinforcement Learning, and Generative Confrontation Internet (Generative Adversarial Networks), etc., to realize artificial intelligence topics such as face recognition and natural language dialogue.
找不到資料