課程摘要

職能培力學堂

計算機視覺與圖像分析

Computer Vision and Image Analysis

負責教師

陳永祥

學分

0.5

基本授課節數

9~10
1.應用經典圖像分析技術 2.使用OpenCV庫實現經典的圖像分析算法 3.比較經典和深度學習對象分類技術 4.使用Microsoft Cognitive Toolkit將Microsoft ResNet,一個深度卷積神經網絡(CNN)應用於對象分類 5.應用轉移學習來增強
1. Apply classical Image Analysis techniques, such as Edge Detection, Watershed and Distance Transformation as well as K-means Clustering to segment a basic dataset. 2. Implement classical Image Analysis algorithms using the OpenCV library. 3. Compare classical and Deep-Learning object classification techniques. 4. Apply Microsoft ResNet, a deep Convolutional Neural Network (CNN) to object classification using the Microsoft Cognitive Toolkit. 5.Apply Transfer Learning to augment ResNet18 for a Fully Convolutional Network (FCN) for Semantic Segmentation.